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Abstract. Increasing attention has been directed to the study of the
automatic emotion recognition in human speech recently. This paper
presents an approach for recognizing negative emotions in spoken dialogs
at the utterance level. Our approach mainly includes two parts. First,
in addition to the traditional acoustic features, linguistic features based
on distributed representation are extracted from the text transcribed by
an automatic speech recognition (ASR) system. Second, we propose a
novel deep learning model, multi-feature stacked denoising autoencoders
(MSDA), which can fuse the high-level representations of the acoustic
and linguistic features along with contexts to classify emotions. Experi-
mental results demonstrate that our proposed method yields an absolute
improvement over the traditional method by 5.2 %.
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1 Introduction

Emotion recognition of speech signals aims to identify the emotional or physical
states of a person by analyzing his or her voice [25]. The automatic recognition
of emotions in human speech has drawn increasing attention over the past few
years, mainly because of the growing number of applications that may benefit
from this research field, e.g. call center, man-machine interaction system, and
speech recognition, etc. Take call center as an example. By analyzing emotions in
spoken dialogs between customers and agents, the managers can find problems
in the customer service so as to reduce customer losses. Besides, it can serve as
evidences for agent performance evaluation.

Emotion recognition of spoken dialogs is a challenging and cross-disciplinary
research area. A variety of acoustic features have been explored by previous
work [4,5,24]. However, these works have neglected linguistic features. Emotion
in an utterance is expressed by not only how it is being said, but also what is
being said. Recently, more attention has been paid to the integration of acoustic
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and linguistic information. For linguistic feature representation, the mainstream
is the bag-of-words (BoW) and n-grams model [12,18,19]. In previous works, the
different kinds of features are combined at input level [12,18,21] or at decision
level [11,16]. Both ways have drawbacks. How to represent and combine linguistic
information for emotion recognition is worthy of further exploration.

In the past few years, a variety of deep neutral networks for emotion recog-
nition have been studied [22,27] and have achieved good performance. The deep
learning method can learn abstract representation from the raw feature space,
and can tolerate noises, making it suitable for spoken language processing.

According to Ayadi’s survey on speech emotion recognition [2], most of the
previous studies employed speech data recorded from actors who were asked to
express the prescribed emotions. Besides, these utterances were produced in iso-
lation without any conversational context. In this work, we focus on recognizing
emotions in Chinese spoken dialogs recorded in a call center that serves actual
customers. The emotion recognition is at the utterance level. We only consider
two categories, i.e. negative and non-negative, rather than a large variety of emo-
tions, which may be unnecessary for our application. The negative emotion can
be used as a strategy to improve the quality of service.

Here we give a brief introduction of our proposed method. First, we extracted
some classical acoustic features mentioned in the previous work. Then the speech
was transcribed to text automatically by an ASR engine. We employed the dis-
tributed representation (embeddings) as linguistic features. Therefore, for each
utterance, there are two kinds of features. The contextual information is based on
the surrounding utterances. A novel deep learning model, referred to as MSDA,
was proposed to fuse the high-level abstractions of acoustic and linguistic fea-
tures to a unified representation and classify the utterances into two categories.

The rest of the paper is organized as follows. The related work is surveyed in
Sect. 2. The proposed approach is presented in Sect. 3. The experimental results
are detailed in Sect. 4. Lastly conclusions are given in Sect. 5.

2 Related Work

The early works on speech emotion recognition have been focused on acoustic fea-
tures. Various frame-level descriptors have been explored. Banse examined vocal
parameters for emotion expression using actors’ portrayals of 14 emotions [3].
Pitch, energy, speech rate, and spectral information were used. McGilloway stud-
ied 22 different acoustic features for the classification of five emotion states [14].
However, using only acoustic features cannot guarantee a good result because it
is just one side of the problem.

Recently, more attentions have been paid to combining acoustic features with
other information, especially linguistic information. The BoW and n-grams rep-
resentation are often used as linguistic features [12,18,19]. Raaijmakers com-
pared n-grams at different level (word, character, and phoneme) and concluded
that character-level features outperform other two levels [19]. Lee proposed emo-
tional salience to measure how much information a word provides towards a cer-
tain emotion [11] and Metze extended it to include bi-grams and tri-grams [16].
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Some of the previous works were based on manual transcripts [11,12], while
other studies relied on ASR [16,21]. In real-word application, only the ASR
approach is feasible. Some studies concluded that the recognition errors brought
by ASR were consistent enough that it had little influence on the results [13,16].
However, Rozgi demonstrated that the results based on ASR were much worse
than the results based on manual transcription [21]. We believe the opposite
conclusions are due to the different dataset and ASR system.

Some researchers employed discourse information for emotion recognition in
human-computer interactive system and achieved good results [11,12]. However,
the discourse feature was manually labeled so that it is not feasible for real-world
applications. Liscombe augmented standard lexical and prosodic features with
contextual features [12]. The contextual features were defined on the difference
between present utterance and previous two utterances. In our method, the
previous and following utterances are both taken into consideration, and the
relation is learned by the neural network, rather than the predefined difference.

For feature combination method, two ways are mainly employed in previ-
ous works. One way is to train separated classifiers for different kinds of fea-
tures and then combine the results of these classifier to make the final classi-
fication [11,16]. However, this way cannot learn the correlation of the different
kinds of features and take full advantage of the complementation of them. The
other way is to combine the different kinds of features at input level and train a
unified classifier [12,18,21]. The acoustic and linguistic features generally have
distinct statistical characteristics and the correlations between them are nonlin-
ear. Consequently, joining the two kinds of features at low-level representation,
e.g. the input layer, may not generate a good unified representation. Besides, this
way may suffer from the dimensionality issues. Recently, Kiela proposed a mul-
timodal representation method [10], which concatenated a skip-gram linguistic
representation vector with a visual concept representation vector computed using
a deep convolutional neural network. However, the different abstractions are just
concatenated without learning their correlation. Our approach first learns the
high-level abstraction of the acoustic and linguistic features separately and then
fuses them to learn a unified high-level representation so that it can overcomes
the shortcomings of the above methods.

3 The Proposed Approach

3.1 Features

Acoustic Features. The acoustic features were automatically extracted from
the speech signal of each utterance by the open source toolkit openSMILE1. At
first, we computed 26 acoustic features (including MFCC, LSP, F0, Intensity,
and MZCR) for each frame (25 ms) with their respective first derivatives. The
F0 features contain F0, F0’s slope, and the prior probability of voice frames. The
1 http://www.audeering.com/research/opensmile

http://www.audeering.com/research/opensmile


106 X. Zhang et al.

intensity features contain the absolute and relative amplitudes in time domain.
MFCC and LSP contain the information about the formant and audio coding.

Based on these per-frame features, we computed the statistical features over
a whole utterance using the statistics listed in Table 1. Hence, each utterance is
represented as a 988-dimensional feature vector: (1+Δ) × (12 MFCC + 8 LSP +
3 F0 + 2 intensity + 1 MZCR) × (4 regressions + 6 percentiles + 3 moments +
6 extremes). Without performing feature selection, we directly use all extracted
features as input, because our model has inherent capability of dimensionality
reduction.

Table 1. The statistics for global features

Statistics Number Detail

Regressions 4 two linear regression coefficients, absolute mean and
variance of error

Percentiles 6 25 %, 50 %, 75 %, 50 %–25 %, 75 %–50 %, 75 %–25 %

Moments 3 variance, skewness, kurtosis

Extremes 6 max, min, max-min, max position, min position,
mean

Linguistic Features. To extract linguistic features, we first transcribed the
audio data into text via an ASR engine. Our ASR system is mainly composed
of five components: feature extraction, acoustic model, language model, lexicon,
and decoder. We used log filter-banks [6] with 40 dimensions as acoustic fea-
tures. The acoustic model, language model, and lexicon were combined into a
single weighted finite state transducers (WFST) as in [1]. The ASR system was
measured on a dataset containing 40 hours of phone dialogs and the character
error rate (CER) is 16 %.

Word segmentation is the first step for Chinese text processing. The ICT-
CLAS2 was utilized to segment our transcribed text into words. We did not
remove any stop words on the consideration that some function words, espe-
cially tone words, can contribute to the emotion recognition.

We represented the text of each utterance by the distributed representa-
tion rather than the traditional BoW. First, word embeddings were trained by
word2vec3 on the combination of three corpus, namely Chinese Gigaword4, Chi-
nese Wikipedia5, and SougouCA6. Next, we composed word embeddings to get
the distributed representation of the utterance text. Due to the bad performance
of a parser on text with ASR errors, composition methods based on a parser [23]

2 http://ictclas.nlpir.org/
3 https://code.google.com/p/word2vec/
4 https://catalog.ldc.upenn.edu/LDC2011T13
5 http://download.wikipedia.com/zhwiki/
6 http://www.sogou.com/labs/dl/ca.html

http://ictclas.nlpir.org/
https://code.google.com/p/word2vec/
https://catalog.ldc.upenn.edu/LDC2011T13
http://download.wikipedia.com/zhwiki/
http://www.sogou.com/labs/dl/ca.html
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are not suitable for our work. Following Hermann’s work [8], we represent the
text of an utterance by the average of its word embeddings. Formally,

f(x) =
n∑

i=1

xi

/
n (1)

where xi is the embedding of the i-th word in the utterance text x and f(x)
is the utterance text vector. As the variance of the length of our text is large,
we used the averaged vectors of words or pairs rather than the sum to alleviate
the influence of text length. The utterance text vectors served as the linguistic
features.

For completely out of vocabulary utterance, the averaged vector of all utter-
ances in the training set serve as the linguistic features. In this case, the classi-
fication mainly depends on the acoustic features.

Contextual Information. Contextual information in dialogs is useful for emo-
tion recognition. It is natural to use the surrounding utterances as additional
evidence to help the emotion recognition of the present utterance.

The acoustic context is defined as the ordered concatenation of the acoustic
feature vectors of utterances in a window. Formally,

w(t) = [x(t − s), ..., x(t), ..., x(t + s)] (2)

where x(t) is the acoustic features of t-th utterance, w(t) is the acoustic features
with context of t-th utterance, and the window size is 2 × s + 1.

The linguistic context is defined in the same way.

3.2 Emotion Classification

We propose a novel classification model, referred to as multi-feature stacked
denoising autoencoder (MSDA). Here, the multi-feature means several kinds
of features with different statistical characteristics and non-linear correlation.
Figure 1 demonstrates the framework of the model, which mainly includes two
parts. In the bottom part, the acoustic features and linguistic features with
their respective contexts are employed as inputs to train two stacked denoising
autoencoders (SDA) to learn the high-level abstractions independently. Subse-
quently, in the top part, the two high-level abstractions are fused to generate
a unified high-level feature representation by another SDA. Finally, the unified
representation serve as the input to a classifier to make the prediction. Next, we
introduce the details of MSDA.

The basic building block for MSDA is the denoising autoencoder (DAE) [26],
which is an extension of the classical autoencoder. The DAE is trained to recon-
struct the input from a partially destroyed version of it, so as to force the hidden
layer to discover more robust features. It can be stacked for building deep net-
works, i.e. the stack denoising autoencoders (SDA).
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Fig. 1. The framework of MSDA

The unsupervised pretraining of MSDA is performed one layer at a time. Each
layer is trained as a denoising autoencoder by minimizing the reconstruction of
its input, which is the output of the previous layer. First, in the bottom part,
the two SDAs are pretrained layer-wise from bottom to top. Then the outputs
of the top layers of the two SDAs are joined together as the input of the top
part. The top part is also pretrained layer-wise from bottom to top.

After pretraining, the MSDA are fine-tuned using labeled data. A classifier is
put on the top of the network so as to be trained with the unified high-level rep-
resentation. In our experiments, the logistic regression (LR) classifier was used.
In our dataset, the number of non-negative utterances is far more than the nega-
tive utterances. The LR classifier does not perform well on imbalanced datasets.
The most common solution of imbalanced learning is sampling [7], however this
solution is not applicable to our approach because contextual information is
used. Thinking differently, we made a modification on the loss function of LR.

J(θ) = − 1
m

[
m∑

i=1

y(i) log hθ(x(i)) + α(1 − y(i)) log(1 − hθ(x(i)))

]
(3)

hθ(x) =
1

1 + exp(−θT x)
(4)

where x(i) is the input, y(i) ∈ {0, 1} is the label (1 for negative and 0 for non-
negative), and θ are model parameters. Note that the second term of Eq. 3 is
multiplied by α ∈ (0, 1], which is a penalty factor of non-negative data to alleviate
the imbalanced learning problem.

Next we introduce the advantages of MSDA. In the previous work, the differ-
ent kinds of features were fused at the input layer [12,18,21], which may not gen-
erate a good unified representation because of distinct statistical characteristics,
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or after the independent prediction [11,16], which cannot take full advantage of
the complementation of different features. Our approach fuses the acoustic and
linguistic features at high-level abstraction and overcomes the shortcomings of
the above two methods. It can be regarded as the trade-off of the two methods.

The utterance text was transcribed automatically by an ASR engine. In our
dataset, some speakers use dialects and the Chinese dialects are diverse. Besides,
the quality of our telephone recordings is not very good. Therefore, the transcrip-
tion errors must be taken into account. In our model, the denoising autoencoders
can discover robust features for classification so as to alleviate this problem.

It should be noted that although our model is introduced with two kinds
of features, it can be easily extended to support more kinds of features. What
needs to be done is to add more SDAs for more kinds of features and take the
outputs of the SDAs as the input of the fused SDA.

4 Experiments and Results

4.1 Dataset and Evaluation Metrics

We collected 254 dialogs (8 kHz, 16 bit WAVE) from a call center, where actual
customers are engaged in spoken dialog with human agents over the telephone.
The dialogs were then segmented into utterances by a speaker diarization algo-
rithm. The goal of speaker diarization is to segment an audio signal into several
acoustic classes, each of which only contains the acoustic data from a single
speaker [20]. The speaker diarization in our work mainly includes two processes:
detecting speaker change points and unsupervised clustering [15]. To avoid over-
long turns, each turn was segmented into one or several utterances based on the
lengths of silences. Our speaker diarization algorithm was evaluated on a dataset
containing 40 hours of phone dialogs and the diarization error rate (DER) was
7 %. We got 34416 utterances after applying speaker diarization on the 254
dialogs.

Three annotators independently labeled each utterance as negative or non-
negative. In our study, the negative emotion represents anger and discontent,
etc., whereas the non-negative emotion represents the complement, i.e., neutral
or positive emotions such as happiness or satisfaction, etc. The annotation was
done after listening to the audio corresponding to an utterance. The majority
label of the three annotators was taken as the label of an utterance when there
were disagreements. After annotation, we got 2437 negative utterances and 31979
non-negative utterances. The constructed dataset is referred to as Emotional
Utterances in Chinese Spoken Dialogs (EUCSD).

Most of the previous work is evaluated on a balanced dataset. For compari-
son, we sampled non-negative utterances from the EUCSD to acquire a subset
having a comparable amount to the negative utterances. This balanced dataset
is referred to as EUCSD-B. Note that EUCSD-B is just used for comparison
experiments, and the results on EUCSD are the final results. For both datasets,
we used 70 % of the data for training and 30 % for testing. The statistics of the
two datasets are shown in Table 2.
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Table 2. The statistics of the two datasets

Dataset Negative Non-negative Training Testing Total

EUCSD 2437 31979 23993 10423 34416

EUCSD-B 2437 2664 3701 1400 5101

Since we focused on the recognition of the negative emotion, the precision,
recall and F1 score for the negative emotion class were employed as the evaluation
metrics.

4.2 Comparison Between Feature Combination Methods

In the first set of experiments, we compare our proposed approach with some
baseline methods. Because the features used in the previous work are diverse,
for simplicity we focus on the feature combination methods. Our acoustic and
linguistic features are used for all of the following methods.

RG: We use random guess to describe the different difficulties of the two dataset.
The results are calculated theoretically, not experimentally. The recall is 0.5,
and the precision is the proportion of the negative emotion category.

SVM-A: An SVM classifier using only the acoustic features.
SVM-L: An SVM classifier using only the linguistic features.
SVM-AL-O: Two SVM classifiers are learned from the acoustic and linguistic

features separately. The final prediction is combined at the decision level by
taking the prediction with the larger posterior probability. This combination
method has been employed in [11,16].

SVM-AL-I: The acoustic and linguistic features are concatenated to unified
features as the input of an SVM classifier. This feature combination method
has been employed in [12,18,21].

MSDA-AL: Our proposed MSDA model is employed for classification but the
contextual information is not used.

SVM-CRF: A two-stage SVM/CRF sequence classifier [9]. First, an SVM is
trained to predict each individual sequence element. Second, a CRF is trained
to predict the whole sequences using the prediction from the previously
trained SVM as its input.

MSDA-ALC: Our proposed MSDA model is employed for classification and the
contextual information is used. The contextual window size is 3.

In this paper, LIBSVM7 and CRF++8 are used for SVM and CRF implemen-
tation respectively, and MSDA is implemented using Theano9. As there are no
unlabeled data in our datasets, we used the labeled data in the training set
7 https://github.com/cjlin1/libsvm
8 http://taku910.github.io/crfpp/
9 http://deeplearning.net/software/theano/

https://github.com/cjlin1/libsvm
http://taku910.github.io/crfpp/
http://deeplearning.net/software/theano/
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for unsupervised pretraining. In the pretraining and fine-tuning process, model
parameters were optimized based on minibatch stochastic gradient descent and
the batch size was 50. For experiments on EUCSD, the penalty factor of non-
negative data was 0.2 for both the SVM and LR classifiers, while for experiments
on EUCSD-B, the penalty factor was 1, i.e. no penalty. The destruction propor-
tion of denoising autoencoders was 0.5.

The comparison results are shown in Table 3. The contextual information
is not involved in Method 1–6, but considered in Method 7 and 8. Due to the
destruction of contexts caused by the sampling, Method 7 and 8 are not applica-
ble on EUCSD-B. The results on EUCSD are much worse than the results on
EUCSD-B, because it is harder to learn a classifier on an imbalanced dataset
than a balanced one, especially for the data with lots of ASR errors.

Table 3. Comparison results of feature combination methods

# Methods EUCSD-B EUCSD

precision recall F1 precision recall F1

1 RG 0.478 0.500 0.489 0.071 0.500 0.124

2 SVM-A 0.721 0.767 0.743 0.337 0.439 0.381

3 SVM-L 0.652 0.868 0.745 0.262 0.467 0.335

4 SVM-AL-O 0.717 0.853 0.779 0.390 0.396 0.393

5 SVM-AL-I 0.726 0.851 0.784 0.326 0.518 0.400

6 MSDA-AL 0.713 0.896 0.794 0.398 0.461 0.428

7 SVM-CRF N/A N/A N/A 0.421 0.112 0.177

8 MSDA-ALC N/A N/A N/A 0.396 0.478 0.433

First, we analyze the experimental results on EUCSD-B. The F1 scores of
SVM-A and SVM-L are close, showing that the linguistic feature cannot improve
the performance individually. However, SVM-AL-O, which makes the predic-
tion based on two classifier, achieves a 3.6 % higher F1 score than SVM-A. It
demonstrates that the two kinds of features are complementary and the joint
use can improve the emotion recognition. Furthermore, SVM-AL-I outperforms
SVM-AL-O by 0.5 %, which demonstrates that combing features at input level
is better than at decision level. This is because the correlation of acoustic and
linguistic features can be learned. MSDA-AL outperforms SVM-AL-I by 1.0 %
and SVM-A by 5.1 %. The improvements are due to the high-level representation
fusion and robust features extracted by denoising autoencoders.

For EUCSD, similar conclusions can be drawn. The only exception is that
SVM-L performs much worse than SVM-A, because the introduction of more
ASR errors does harm to the classification. Nevertheless, the combination of the
acoustic and linguistic features can still help emotion recognition, with SVM-
AL-O and SVM-AL-I outperforming SVM-A by 1.2 % and 1.9 % respectively.
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Furthermore, MSDA-AL outperforms SVM-AL-I by 2.8 % and SVM-A by 4.7 %.
Next are two experiments with contexts taken into account. SVM-CRF modeled
the task by sequence labeling model, however this method performs badly and
may be because the CRF model needs a large number of data to learn the model
parameters and the imbalanced learning problem is not concerned. This is why
our proposed approach employs contextual information as input features rather
than sequence labeling. One potential concern of our method is the curse of
dimensionality, but it can be solved by the dimensionality reduction of DAE in
our model. With contextual information, MSDA-ALC outperforms MSDA-AL
by 0.5 % and SVM-A by 5.2 %. The absolute improvements on both datasets are
highly consistent, demonstrating the effectiveness and reliability of the proposed
approach.

4.3 Comparison Between Models for Linguistic Features

We compare our linguistic feature model with some baseline models. We only
employ linguistic features for emotion classification and the experimental settings
are as follows:

SVM-BOW: The inputs are the BoW representations and the classifier is SVM.
ES: The emotional salience [11] is used for emotion classification.
SVM-EMB: The inputs are the distributed representations and the classifier is

SVM.

The dimensionality of the BoW representation is the vocabulary size, i.e. 13469
in our dataset, while the dimensionality of the distributed representation is 200,
much lower and denser than BoW.

The EUCSD-B is used as the experimental dataset and the results are shown
in Table 4. The F1 score of SVM-BoW is 0.728. The result of ES is even worse
than SVM-BoW. This is because the classification method of emotional salience
is simple. The SVM-EMB outperforms SVM-BoW, which demonstrates that the
distributed representation is better than the traditional BoW representation.

Table 4. Comparison results of linguistic feature models

# Methods Precision Recall F1

1 SVM-BoW 0.740 0.718 0.728

2 ES 0.565 0.886 0.690

3 SVM-EMB 0.652 0.868 0.745

4.4 Comparisons Between MSDA and SDA

We also compare the proposed MSDA with SDA. The experimental settings are
as follows:
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SDA-AL: The acoustic and linguistic features are concatenated to generate a
unified feature representation, which is the input to an SDA.

MSDA-AL: The same as described in Sect. 4.2.
SDA-ALB: The same as SDA-AL except that the BoW representation is used

as linguistic features.
MSDA-ALB: The same as MSDA-AL except that the BoW representation is

used as linguistic features.

Table 5 shows the results of the above methods on EUCSD-B. Although MSDA-
AL outperforms SDA-AL, the improvement is small, only 0.4 %. This is because
the linguistic feature is distributed representation and the same normalization
methods are employed for the two kinds of features so that the statistical char-
acteristics of acoustic and linguistic features are similar. The premise that the
correlation of acoustic and linguistic features is non-linear does not hold. To
prove the effectiveness of MSDA, two more experiments were conducted, in
which the BoW representation was used as the linguistic feature. In this case,
the correlation of acoustic and linguistic features is believed to be non-linear
and MSDA-ALB outperforms SDA-ALB by 1.9 %. Therefore, for the cases that
there are different kinds of features with non-linear correlation, the MSDA is
a good choice. Furthermore, before fusing different features, MSDA has fewer
model parameters than SDA, because the two kinds of features are separated in
low layers.

Table 5. Comparison between MSDA and SDA

# Methods Precision Recall F1

1 SDA-AL 0.717 0.879 0.790

2 MSDA-AL 0.713 0.896 0.794

3 SDA-ALB 0.688 0.844 0.758

4 MSDA-ALB 0.714 0.853 0.777

5 Conclusion and Future Work

In this paper, we propose a novel approach for emotion recognition in spoken
dialogs. The utterances are transcribed to text by an ASR engine and then the
distributed representations of the text are employed as linguistic features. The
acoustic and linguistic features along with contextual information are provided to
MSDA to learn the high-level representation, which are then fused to a unified
feature representation for emotion classification. To evaluate the effectiveness
of the proposed approach, we constructed a dataset based on dialogs from a
call center. The experimental results demonstrate that our proposed approach
outperforms other comparative methods.

As to future work, we plan to study other approaches for leveraging con-
textual information. Additionally, we will explore our MSDA model to other
tasks.
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