Bidirectional Recurrent Convolutional Neural Network for Relation Classification

Abstract

Relation classification is an important semantic processing task in the field of natural language processing (NLP). In this paper, we present a novel model BRCNN to classify the relation of two entities in a sentence. Some state-of-the-art systems concentrate on modeling the shortest dependency path (SDP) between two entities leveraging convolutional or recurrent neural networks. We further explore how to make full use of the dependency relations information in the SDP, by combining convolutional neural networks and two channel recurrent neural networks with long short term memory (LSTM) units. We propose a bidirectional architecture to learn relation representations with directional information along the SDP forwards and backwards at the same time, which benefits classifying the direction of relations. Experimental results show that our method outperforms the state-of-the-art approaches on the SemEval-2010 Task 8 dataset.

Publication
In the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016)
Date